583 research outputs found

    Collisionless reconnection: The sub-microscale mechanism of magnetic field line interaction

    Get PDF
    Magnetic field lines are quantum objects carrying one quantum Φ0=2πℏ/e\Phi_0=2\pi\hbar/e of magnetic flux and have finite radius λm\lambda_m. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Antiparallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field which we determine quantum mechanically for two parallel and two antiparallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.Comment: 13 journal pages, 6 figures, submitted to Ann. Geophy

    The initial temporal evolution of a feedback dynamo for Mercury

    Full text link
    Various possibilities are currently under discussion to explain the observed weakness of the intrinsic magnetic field of planet Mercury. One of the possible dynamo scenarios is a dynamo with feedback from the magnetosphere. Due to its weak magnetic field Mercury exhibits a small magnetosphere whose subsolar magnetopause distance is only about 1.7 Hermean radii. We consider the magnetic field due to magnetopause currents in the dynamo region. Since the external field of magnetospheric origin is antiparallel to the dipole component of the dynamo field, a negative feedback results. For an alpha-omega-dynamo two stationary solutions of such a feedback dynamo emerge, one with a weak and the other with a strong magnetic field. The question, however, is how these solutions can be realized. To address this problem, we discuss various scenarios for a simple dynamo model and the conditions under which a steady weak magnetic field can be reached. We find that the feedback mechanism quenches the overall field to a low value of about 100 to 150 nT if the dynamo is not driven too strongly

    Dispersion Relations for Bernstein Waves in a Relativistic Pair Plasma

    Full text link
    A fully relativistic treatment of Bernstein waves in an electron-positron pair plasma has remained too formidable a task owing to the very complex nature of the problem. In this article, we perform contour integration of the dielectric response function and numerically compute the dispersion curves for a uniform, magnetized, relativistic electron-positron pair plasma. The behavior of the dispersion solution for several cases with different plasma temperatures is highlighted. In particular, we find two wave modes that exist only for large wavelengths and frequencies similar to the cyclotron frequency in a moderately relativistic pair plasma. The results presented here have important implications for the study of those objects where a hot magnetized electron-positron plasma plays a fundamental role in generating the observed radiation.Comment: 8 pages, 8 figures, Accepted for publication by Phys. Rev. E with minor change

    Collisionless reconnection: magnetic field line interaction

    Get PDF
    Magneticfieldlinesarequantumobjectscarrying onequantum0=2πh ̄/eofmagneticfluxandhavefinite radius λm. Here we argue that they possess a very specific dynamicalinteraction.Parallelfieldlinesrejecteachother. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, at- tract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we de- termine quantum mechanically for two parallel and two anti- parallel field lines. The distortion of the quantum electrody- namic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynam- ics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become im- portant in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale

    Fluid and particle signatures of dayside reconnection

    No full text
    International audienceUsing measurements of the AMPTE/IRM spacecraft, we study reconnection signatures at the dayside magnetopause. If the magnetopause is open, it should have the properties of a rotational discontinuity. Applying the fluid concept of a rotational discontinuity, we check for the existence of a de Hoffmann-Teller frame and the tangential stress balance (Walén relation). For 13 out of 40 magnetopause crossings in a statistical survey we find a reasonable agreement between observed plasma flows and those predicted by the Walén relation. In addition, we check if the measured distribution functions show single particle signatures which are expected on open field lines. We find the following types of signatures: field-aligned streaming of ring current particles, "D-shaped" distributions of solar wind particles, counterstreaming of solar wind and cold ionospheric ions, two-beam distributions of solar wind ions, and distributions of solar wind particles associated with field-aligned heat flux. While a particular type of particle signature is observed only for the minority of magnetopause crossings, 24 of the 40 crossings show at least one type of signature. Both the particle signatures and the fit to the Walén relation can be used to infer the sign of the normal magnetic field, Bn. We find that the two ways of inferring the sign of Bn lead primarily to the same result. Thus, both the particle signatures and a reasonable agreement with the Walén relation can, in a statistical sense, be considered as a useful indicator of open field lines. On the other hand, many crossings do not show any reconnection signatures. We discuss the possible reasons for their absence

    Study of reconnection-associated multi-scale fluctuations with Cluster and Double Star

    Full text link
    The objective of the paper is to asses the specific spectral scaling properties of magnetic reconnection associated fluctuations/turbulence at the Earthward and tailward outflow regions observed simultaneously by the Cluster and Double Star (TC-2) spacecraft on September 26, 2005. Systematic comparisons of spectral characteristics, including variance anisotropy and scale-dependent spectral anisotropy features in wave vector space were possible due to the well-documented reconnection events, occurring between the positions of Cluster (X = -14--16 ReR_e) and TC-2 (X = -6.6 ReR_e). Another factor of key importance is that the magnetometers on the spacecraft are similar. The comparisons provide further evidence for asymmetry of physical processes in Earthward/tailward reconnection outflow regions. Variance anisotropy and spectral anisotropy angles estimated from the multi-scale magnetic fluctuations in the tailward outflow region show features which are characteristic for magnetohydrodynamic cascading turbulence in the presence of a local mean magnetic field. The multi-scale magnetic fluctuations in the Earthward outflow region are exhibiting more power, lack of variance and scale dependent anisotropies, but also having larger anisotropy angles. In this region the magnetic field is more dipolar, the main processes driving turbulence are flow breaking/mixing, perhaps combined with turbulence ageing and non-cascade related multi-scale energy sources.Comment: 30 pages, 6 figure

    Using Synthetic Spacecraft Data to Interpret Compressible Fluctuations in Solar Wind Turbulence

    Full text link
    Kinetic plasma theory is used to generate synthetic spacecraft data to analyze and interpret the compressible fluctuations in the inertial range of solar wind turbulence. The kinetic counterparts of the three familiar linear MHD wave modes---the fast, Alfven, and slow waves---are identified and the properties of the density-parallel magnetic field correlation for these kinetic wave modes is presented. The construction of synthetic spacecraft data, based on the quasi-linear premise---that some characteristics of magnetized plasma turbulence can be usefully modeled as a collection of randomly phased, linear wave modes---is described in detail. Theoretical predictions of the density-parallel magnetic field correlation based on MHD and Vlasov-Maxwell linear eigenfunctions are presented and compared to the observational determination of this correlation based on 10 years of Wind spacecraft data. It is demonstrated that MHD theory is inadequate to describe the compressible turbulent fluctuations and that the observed density-parallel magnetic field correlation is consistent with a statistically negligible kinetic fast wave energy contribution for the large sample used in this study. A model of the solar wind inertial range fluctuations is proposed comprised of a mixture of a critically balanced distribution of incompressible Alfvenic fluctuations and a critically balanced or more anisotropic than critical balance distribution of compressible slow wave fluctuations. These results imply that there is little or no transfer of large scale turbulent energy through the inertial range down to whistler waves at small scales.Comment: Accepted to Astrophysical Journal. 28 pages, 7 figure

    Electron-Scale Quadrants of the Hall Magnetic Field Observed by the Magnetospheric Multiscale spacecraft during Asymmetric Reconnection

    Get PDF
    An in situ measurement at the magnetopause shows that the quadrupole pattern of the Hall magnetic field, which is commonly observed in a symmetric reconnection, is still evident in an asymmetric component reconnection, but the two quadrants adjacent to the magnetosphere are strongly compressed into the electron scale and the widths of the remaining two quadrants are still ion scale. The bipolar Hall electric field pattern generally created in a symmetric reconnection is replaced by a unipolar electric field within the electron-scale quadrants. Furthermore, it is concluded that the spacecraft directly passed through the inner electron diffusion region based on the violation of the electron frozen-in condition, the energy dissipation, and the slippage between the electron flow and the magnetic field. Within the inner electron diffusion region, magnetic energy was released and accumulated simultaneously, and it was accumulated in the perpendicular directions while dissipated in the parallel direction. The localized thinning of the current sheet accounts for the energy accumulation in a reconnection

    On the exclusion of intra-cluster plasma from AGN-blown bubbles

    Full text link
    Simple arguments suggest that magnetic fields should be aligned tangentially to the surface of an AGN-blown bubble. If this is the case, charged particles from the fully ionised intra-cluster medium (ICM) will be prevented, ordinarily, from crossing the boundary by the Lorentz force. However, recent observations indicate that thermal material may occupy up to 50% of the volume of some bubbles. Given the effect of the Lorentz force, the thermal content must then be attributed to one, or a combination, of the following processes: i) the entrainment of thermal gas into the AGN outflow that inflated the bubble; ii) rapid diffusion across the magnetic field lines at the ICM/bubble interface; iii) magnetic reconnection events which transfer thermal material across the ICM/bubble boundary. Unless the AGN outflow behaves as a magnetic tower jet, entrainment may be significant and could explain the observed thermal content of bubbles. Alternatively, the cross-field diffusion coefficient required for the ICM to fill a typical bubble is roughly 10^16 cm^2 s^-1, which is anomalously high compared to predictions from turbulent diffusion models. Finally, the mass transfer rate due to magnetic reconnection is uncertain, but significant for plausible reconnection rates. We conclude that entrainment into the outflow and mass transfer due to magnetic reconnection events are probably the most significant sources of thermal content in AGN-blown bubbles.Comment: Accepted for publication in MNRAS, 8 pages, 1 figur
    • …
    corecore